75 research outputs found

    A study of TCP performance in wired-cum-ad hoc environments

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Low Contact Barrier in 2H/1T′ MoTe2 In-Plane Heterostructure Synthesized by Chemical Vapor Deposition

    Get PDF
    Metal–semiconductor contact has been a critical topic in the semiconductor industry because it influences device performance remarkably. Conventional metals have served as the major contact material in electronic and optoelectronic devices, but such a selection becomes increasingly inadequate for emerging novel materials such as two-dimensional (2D) materials. Deposited metals on semiconducting 2D channels usually form large resistance contacts due to the high Schottky barrier. A few approaches have been reported to reduce the contact resistance but they are not suitable for large-scale application or they cannot create a clean and sharp interface. In this study, a chemical vapor deposition (CVD) technique is introduced to produce large-area semiconducting 2D material (2H MoTe2) planarly contacted by its metallic phase (1T′ MoTe2). We demonstrate the phase-controllable synthesis and systematic characterization of large-area MoTe2 films, including pure 2H phase or 1T′ phase, and 2H/1T′ in-plane heterostructure. Theoretical simulation shows a lower Schottky barrier in 2H/1T′ junction than in Ti/2H contact, which is confirmed by electrical measurement. This one-step CVD method to synthesize large-area, seamless-bonding 2D lateral metal–semiconductor junction can improve the performance of 2D electronic and optoelectronic devices, paving the way for large-scale 2D integrated circuits

    Genome-wide identification and expression analysis of AUX/LAX family genes in Chinese hickory (Carya cathayensis Sarg.) Under various abiotic stresses and grafting

    Get PDF
    Auxin is essential for regulating plant growth and development as well as the response of plants to abiotic stresses. AUX/LAX proteins are auxin influx transporters belonging to the amino acid permease family of proton-driven transporters, and are involved in the transport of indole-3-acetic acid (IAA). However, how AUX/LAX genes respond to abiotic stresses in Chinese hickory is less studied. For the first time identification, structural characteristics as well as gene expression analysis of the AUX/LAX gene family in Chinese hickory were conducted by using techniques of gene cloning and real-time fluorescent quantitative PCR. Eight CcAUX/LAXs were identified in Chinese hickory, all of which had the conserved structural characteristics of AUX/LAXs. CcAUX/LAXs were most closely related to their homologous proteins in Populus trichocarpa , which was in consistence with their common taxonomic character of woody trees. CcAUX/LAXs exhibited different expression profiles in different tissues, indicating their varying roles during growth and development. A number of light-, hormone-, and abiotic stress responsive cis-acting regulatory elements were detected on the promoters of CcAUX/LAX genes. CcAUX/LAX genes responded differently to drought and salt stress treatments to varying degrees. Furthermore, CcAUX/LAX genes exhibited complex expression changes during Chinese hickory grafting. These findings not only provide a valuable resource for further functional validation of CcAUX/LAXs, but also contribute to a better understanding of their potential regulatory functions during grafting and abiotic stress treatments in Chinese hickory

    Ethylene is involved in the regulation of iron homeostasis by regulating the expression of iron-acquisition-related genes in Oryza sativa

    Get PDF
    Plants employ two distinct strategies to obtain iron (Fe) from the soil. In Strategy I but not Strategy II plants, Fe limitation invokes ethylene production which regulates Fe deficiency responses. Oryza sativa (rice) is the only graminaceous plant described that possesses a Strategy I-like system for iron uptake as well as the classic Strategy II system. Ethylene production of rice roots was significantly increased when grown under Fe-depleted conditions. Moreover, 1-aminocyclopropane-1-carboxylic acid (ACC) treatment, a precursor of ethylene, conferred tolerance to Fe deficiency in rice by increasing internal Fe availability. Gene expression analysis of rice iron-regulated bHLH transcription factor OsIRO2, nicotianamine synthases 1 and 2 (NAS1 and NAS2), yellow-stripe like transporter 15 (YSL15) and iron-regulated transporter (IRT1) indicated that ethylene caused an increase in transcript abundance of both Fe (II) and Fe (III)-phytosiderophore uptake systems. RNA interference of OsIRO2 in transgenic rice showed that ethylene acted via this transcription factor to induce the expression of OsNAS1, OsNAS2, OsYSL15, and OsIRT1. By contrast, in Hordeum vulgare L. (barley), no ethylene production or ethylene-mediated effects of Fe response could be detected. In conclusion, Fe-limiting conditions increased ethylene production and signalling in rice, which is novel in Strategy II plant species

    Excellent Carbonation Behavior of Rankinite Prepared by Calcining the C-S-H: Potential Recycling of Waste Concrete Powders for Prefabricated Building Products

    No full text
    Pure rankinite (C3S2) was prepared by calcining a C-S-H gel precursor at a temperature of 1300 °C. The carbonation hardening behavior of the resulting rankinite was revealed by X-ray diffraction (XRD), Fourier transform-infrared (FT-IR) spectroscopy, thermogravimetry and differential thermal analysis (TG/DTA), and scanning electron microscope (SEM) coupled with energy dispersive spectrum (EDS). The results indicate that the pure rankinite can be easily prepared at a lower temperature. The cubic compressive strengths of the resulting rankinite samples reach a value of 62.5 MPa after 24 h of carbonation curing. The main carbonation products formed during the carbonation process are crystalline calcite, vaterite and highly polymerized amorphous silica gels. The formed carbonation products fill the pores and bind to each other, creating a dense microstructure, which contributes to the excellent mechanical strength. These results provide a novel insight into potential recycling of waste concrete powders for prefabricated building products with lower CO2 emissions
    corecore